The Limits of Language

“The limits of my language are the limits of my world” – Ludwig Wittgenstein

Remember when you were learning the colors as a child? Of course you don’t, you were much too young. But imagine trying to teach a child colors. What would you do? You would probably make a little flashcard or something of each of the seven primary and secondary colors and show them to the infant over and over again. And that would probably work. But take a look at the color spectrum below.

Can you tell me where the red ends and the orange begins? Drawing a definite line on that spectrum becomes pretty difficult. And there are literally an infinite amount of wavelengths along that spectrum that we whittle down into seven categories. So why do we do this?

A recent study into developmental psychology shows that infants are more perceptible to subtle changes in hue than full-grown adults. This is because they have not yet been taught to categorize colors into the seven categories that we have words for. More accurately, infants process colors using the right hemisphere of their brain, the one responsible for creativity and imagination, but adults process them using the left, the hemisphere more concerned with analyzing language and data. This means that learning the names of colors actually re-routes our perception of them to the other side of the brain, and actually causes us to become effectively “color-blind” to subtle differences in hue that infants can perceive much more easily.

This phenomenon is called linguistic relativity, and to fully understand it, let’s try another thought experiment. Imagine that instead of a human baby, you were dealing with a computer baby. Now this baby thinks like a computer; it retains information instantly and processes data quantitatively as opposed to qualitatively. How would you teach it the colors? You would have to draw a line on that spectrum and define each color as being every wavelength between two of those lines. But that’s not how we want our computers to process colors. We want them to be able access every wavelength along the spectrum separately, so we give them a system of numbers that correspond to certain amounts of each primary color. But if this is a more accurate way to process color data, why do we humans use names like ‘fuchsia’ or ‘magenta’ to signify slight changes in hue along the spectrum? Why do we use qualitative language to define a quantitative world?

The answer is that we do not think quantitatively. To even understand a numerical system, we have to assign characters to each quantity, the same way we assign characters to represent sounds that our mouths make that in turn represent objects around us or even abstract concepts. We need a language in order to understand anything. So how did this come about? The obvious assumption is that language develops naturally out of a necessity to communicate with each other. Many animals make different sounds that mean different things in order to communicate to each other, but can we really consider this ‘language’ the same way we use ours? These animals cannot use their language to discuss abstract thoughts or work out solutions to problems, and I think it’s safe to assume that they’re simple language does not affect their perception in the same way ours does. So if language came out of a necessity to describe the world around us, at what point did it start informing our perception of that world? The change from how we process colors as infants to how we process them as adults may be a good indication. Our brain has a fantastic way of sending signals so that they cross as much of our brain as possible. The visual data you take in through your eyes gets processed in the very back of your brain, and the signals actually criss-cross, with your left visual field being processed by the right hemisphere of your brain and vice versa. This, along with the shift of the color processing from one side of your brain to the other as you develop, is a good example of how the brain works. It likes to send information to all corners of the brain, so that those separate parts can all collaborate on processing the information and informing your perception of it. Thus we think using associations. When we see something, we associate it with other things we’ve seen, heard, felt, learned, or experienced. This is why symbols and language are the basis of our understanding of the world.

But why do our brains work like this? Wouldn’t we be more efficient and productive if we processed information the same way a computer does? Why would we evolve in a way that is counter-productive to our survival? It may be that there is something more important and essential to our survival in drawing associations between vastly different things, than simply processing the data in front of us logically. If we start to look at how we perceive the world, the limits of our perception become clearer and clearer. Take the visual spectrum as an example again. Humans see the spectrum as starting with red and ending with purple. These are the lower and upper limits of what we interpret as visual light. However, the spectrum continues far past those limits. We know that infrared and ultraviolet light can be seen by animals such as insects and snakes (and Graboids), but we cannot see those wavelengths ourselves without special instruments.

Our bodies interpret infrared light as heat and ultraviolet light actually damages our eyes. But the spectrum goes on from there. We use microwaves to heat our food and radio waves to send signals across vast distances. In the other direction, we use X-rays to see through our own skin and Gamma rays can mutate our bodies in disgusting ways. So we interact with different wavelengths of the same energy in vastly different ways. Thus, the data we receive from the outside world is always perceived qualitatively, i.e. as different effects on our bodies, though in a logical world, they are simply numbers on a scale. So it would be counter-intuitive for us to simply perceive the world as quantitative data.

And so we have invented a new language called science by which we attempt to understand the quantitative nature of the world.  Science allows us to broaden our perspective, because it breaks the barrier of what can be put into words and what can’t.  Those aspects of our universe that can’t be described with words are put into numbers and formulas that allow us to interpret data in a way that we can understand it.  There is a misunderstanding that science is the ‘language of the universe,’ but this is not so.  The universe does not have an inherent way for us to understand it, science is merely our attempt to do so.  If science were the language of the universe, we wouldn’t have the discrepancies that we encounter when we try to merge our scientific laws together.  Einstein was convinced, as are many others still, that one day we will find a Unified Field Theory, basically one scientific theory that successfully describes all of the fundamental forces and elementary particles.  However, the more we search for this theory, the more we find that scientific fields do not merge easily.  Physics work differently at an astronomical level than they do at our level, and even more differently at the subatomic level.  As we delved deeper into quantum mechanics, it became more and more obvious that scientific laws don’t apply at every level of the universe.  Subatomic particles are known to pop in and out of existence, exist in two different places at one time, and behave as waves when they are in fact particles.  This has led some theorists to believe that there is no unified field theory, that each field of science only applies within that field.  This theory makes sense if we think of science as a language.  Just like you couldn’t expect to speak English and have someone who only speaks Spanish understand you, you can’t expect to apply quantum-level science to everyday life.  The two languages are not only different, they are mutually exclusive.  So the more we develop our scientific language, the more we will understand of the universe, but we will never be able to fully comprehend its vast intricacies.

So if our understanding of the world is based on our language, how can we begin to understand the inexplicable, that which cannot be put into words? Wittgenstein (this blog’s honoree) had a simple answer for this. He said, “Whereof one cannot speak, thereof one must remain silent.” Meaning quite simply that if you can’t logically talk about it, don’t. Any attempt to do so is an exercise in futility. This may seem like an easy way to brush off the question, but if we put it into context with the rest of Wittgenstein’s life, it may give us some more insight into what he meant. Wittgenstein devoted his life to logic and analytical philosophy. He was convinced that logic by its nature could solve all problems of philosophy. Wittgenstein’s biggest achievement was his Tractatus Logico-Philisophicus, which he wrote in the trenches of the First World War. The Tractatus is a short, enigmatic puzzle box of a book that reads more like an instruction manual than a book on philosophy. His philosophical statements are put simply, with no explanation or examples of what they mean, because frankly Wittgenstein didn’t give a shit whether anyone understood it, even his best friend and mentor Bertrand Russell. He starts off by saying that, “The world is the totality of facts, not of things.” With no examples, allegories, or any other helpful tools to decipher the meaning of this, we must simply read on and hope that it will all make sense soon. He goes on to break the world down into what is and what is not “the case,” meaning facts that make up the world are either true or not true. With these two ideas put together, we can start to see how Wittgenstein saw the world. Instead of seeing a red ball on a table and saying, “There is a red ball on a table,” Wittgenstein would have us say, “The fact that a ball exists is true, the fact that a table exists is true, the fact that the ball is red is true, and the fact that the red ball is on the table is true.” This view of the world as being made up of facts instead of objects, once extrapolated, is a beautiful way of merging the world of abstractions and the material world into one world of logical thoughts that is entirely dependent on our thinking them and putting them into words. And yet when we come to the end of the Tractatus, Wittgenstein starts to contradict himself. He says, “The correct method in philosophy would really be the following: to say nothing except what can be said, i.e. propositions of natural science—i.e. something that has nothing to do with philosophy.” This almost seems like a self-abasing joke at the end of his masterpiece. After a long discussion about philosophy, he comes to the conclusion that the only things that can be talked about logically are things that have nothing to do with philosophy at all. He confirms this with his statement, “My propositions are elucidatory in this way: he who understands me finally recognizes them as senseless.”  This new view of philosophy as being ultimately futile came to characterize his later work.  He described all of philosophy as mere “language games” which, when played, may help us understand the world, but in and of themselves are meaningless.

And so it is the task of a person seeking the truth not to let language limit his perception, but rather to enhance it.  This means fully understanding the scope and purpose of language, but also realizing its limits and its effect on our comprehension of the world around us.  Let us never forget that things are not limited by their definition, but rather that our perception of that thing is; and that we may never fully understand the universe, but we may better connect to it by dismissing our definitions of it.

11 thoughts on “The Limits of Language

  1. Pingback: Pi is Overrated | Duckrabbits
    • That’s the million dollar question. Though ‘actual reality’ becomes a loosely-defined term with this philosophy, I think keeping the limits and filters of your understanding in mind as you live your life is a good way to improve your understanding of it. If you do, you’ll find more and more ways that your perception is skewed or limited or filtered through language and customs. This may only lead to you understanding that you can’t really understand anything, but maybe that is the ‘actual reality.’

    • In the interest of thought-processes, here is a partial re-post of my comment on Fide Dubitandum (which is where I ran across your name):

      ” …. Just thinking out loud here, consider these ‘sources’ [for world views]:
      – sacred scriptures (assumes revelatory explanations)
      – natural world (assumes either immanence or a physical limit)
      – metaphysical or artistic construction (assumes the capacity to rationally construct, intuit or otherwise apprehend a ‘correct’ understanding or model of what lies outside of scientific inquiry)

      ” … we routinely draw from all three sources, without necessarily examining the relevant constraints … Have I missed any obvious other sources – or subcategories? Thoughts?”

      Any thoughts as to where Wittgenstein’s philosophy of language should fit in? Is it a separate category or a physical limit under the ‘natural world’?

      BTW, did you notice that if we abbreviate his posthumously published Philosophical Investigations we get pi?

      • I think he was trying to redefine the ‘natural world’ as thoughts and facts as opposed to objects and materials, but his source was still the ‘natural world.’ While he was influenced by metaphysical thoughts and religion during the war, he did not consider them part of the natural world, and therefore beyond the scope of science or philosophy.

  2. “”But why do our brains work like this? Wouldn’t we be more efficient and productive if we processed information the same way a computer does? Why would we evolve in a way that is counter-productive to our survival? It may be that there is something more important and essential to our survival in drawing associations between vastly different things, than simply processing the data in front of us logically.””

    If you follow my theory of mind, it makes sense to send the data to many parts of the brain at once, let many parts match for patterns. If a pattern match is found, the object can be added to the simulation with the least amount of effort. It is the fastest way to update a simulation set. To wit, we tend to speak and think in patterns. Consider terms like sunrise, rising tides float all boats, golf applause, and team spirit. All of these have different facets for every thinker, for every instance of each. What they have in common is that they tidily wrap up a set of rules and patterns in an easy to convey package. These sound bites allow us to include them into our current simulation with ease. There are no rules on how this works per se that I can see, though the ‘meme’ seems to be a good definition of how we transfer the data which can be incorporated quickly. That need shapes how we communicate. To communicate effectively you have to speak in terms that the listener will recognize. Take your info and wrap it up in easily digested pieces.

    Humor works because it fools the process of incorporation. It amuzes us to have built the simulation wrongly because of a rule we forgot or don’t use much, or at all. At least in general terms.

    The core of our consciousness is evolved to take in data directly to the simulation with enough skill/ease that survival is possible/probable. Outside of listening for tigers or spotting blackberries etc. the information does not quickly transcribe into the simulation. That requires some packaging – language. Within the framework of language we can further condense the information by using memes. 7 colors or so might be some optimal number for creating the most condensed transfer of data. I’m not a linguist but I understand communications at some level. The transfer of data. In that transfer we use terms of acknowledgement like “I see what you’re saying” or “I hear what you’re saying” etc. We don’t say I have received the information, rather we pronounce that we have assimilated the data to our simulation. Language is not simply about describing things, but about transfering data. Our brains work with less than optimal data all the time. This is why it is important that data transfer bring simulation rules along with it when possible. Something like ‘pogo stick action’ does just this. Examine your own use of language to see the memes and rules that you convey without considering that this is what you’re doing.

    Good post.

    • But if the process of ‘packaging’ the data actually adversely affects our intake of the data (our perception), then can we say that language is the best way to process it? And how else is our perception affected by our ‘packaging’ process that we don’t even know about?

      • We have a fair handle on the issue. Subliminal messaging, colors that subdue emotions, optical and auditory illusions and so on.

        This is why shared experience is so important to knowing anything is true. As for language being the best way to process information I will say this: Nothing about the human / mammalian body is perfect. Evolution made it just good enough to survive long enough to reproduce and really didn’t do much on making things perfect or optimal. We have dentures, glasses, hearing aids, replacement hips and hearts etc., and on.

        Our language skills (speaking, comprehending) are only in the good enough category and not some perfection of communication. They fit the rest of us. If you look at people’s attention spans and our use of memes, sound bites and so on, we are rather more fit for grunts, barks, screams, and growls than for complex language structures.

        If we work on it hard enough, language skills can improve, but that is not the wont of your average person. It generally requires the memorization of many complex symbols. At this point the limitation is not our capabilities but our lack of desire to use them more energetically in this regard.

  3. Pingback: Where Is My Mind? | Duckrabbits

Leave a Reply to myatheistlife Cancel reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s